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3.1. SOME ASPECTS OF NON LINEAR PROBLEMS 
 

3.1.1 EQUILIBRIUM PATH AND RESPONSE DIAGRAMS 

 

The concept of equilibrium path plays a central role in explaining the problem of 

nonlinear structural analysis. 

This concept lends itself to graphical representation in the form of so-called  

response diagrams. 

 

The most used form of these pictures is 

the load-deflection response diagram. 

Through this representation, many key 

concepts can be illustrated and 

interpreted in physical, mathematical or 

computational terms. 
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Load-deflection response 

The overall behavior of many structures under static loads can be characterized by 

a load-deflection or force-displacement response. 

In this figure a “representative” force quantity is plotted against a “representative” 

displacement quantity.  

If the response graph is nonlinear, the structure behavior is nonlinear. 
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The word “representative” implies the choice among many possibilities.  

For simple structures such a choice can be trivial, for more complex structures such 

a decision can not be obvious. 

 

The response curve in a load-deflection diagram is called a path: each point of such 

a curve represents a possible configuration or state of the mechanical system.  

If the path represents configurations of static equilibrium, it is also called equilibrium 

path. 

 

The origin of the response curve (zero load and displacement) is called reference 

state and from this configurations loads and deflections are measured. 

 

In the case of perfect structures, the equilibrium reference state is undeformed and 

unstressed; the equilibrium path then passes through this reference state (origin of 

the response load-deflection diagram). 
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3.1.2 PARTICULAR EQUILIBIUM POINTS 

Some points of the equilibrium path must be carefully considered: 

Critical points 

• Limit points: the tangent to the response curve is horizontal 

• Bifurcation points: two or more equilibrium paths cross at such points  

At such points the relation between load and deflection is not unique; the structure 

becomes physically uncontrollable. 

Turning points 

• At such points the tangent to the response curve is vertical 

Failure points 

• At such points the equilibrium path breaks because of the failure of the structure; 

such failure can be local or global. In the first case the structure can reach a new 

equilibrium configuration after dynamically jumping to another equilibrium path. If 

the failure point correspond to a global crisis, the structure undergoes 

catastrophic failure. 
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Any path that follows a fundamental path by connecting with it at a critical point is 

called a secondary path. 
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3.1.3 LINEAR BEHAVIOR 

The linear behavior of structures is mathematically represented by linear relations: 

the fundamental equilibrium path is linear for any value of the load or displacement. 

This implies: 

• Any load value can be sustained by the structure; 

• Critical, turning or failure points are absent in the equilibrium path; 

• Structural response can be obtained by exploiting superposition; 

• Complete unloading of the structure leads to the reference state. 

The above conditions require: 

• Perfect linear elasticity behavior for any deformation value; 

• Small or infinitesimal deformations; 

• Unlimited strength 

Despite the difficulties in satisfying the above restrictions (some of them are incompatible 

each other), the linear model can be usefully used to represent the structure behavior in the 

vicinity of the reference state. 
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3.1.4 GENERALIZED RESPONSE 

The load-displacement curve requires to introduce: 

1. A control parameter, λ, plotted along the vertical axis, to be represented versus 

2. A state parameter, D , plotted along the horizontal axis. 

 

The parameters λ and D characterize in some way the actions applied to the 

structure and the deformed state of the structure, respectively. 

 

The control parameter is often a load amplitude or load factor or multiplier, while the 

state parameter is a displacement amplitude of some structure’s point.  

 

The well-known load-deflection response is simply a particular case of the control 

state response. 
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(a)      (b)     (c)     (d) 

Possible response patterns: (a) snap-through, (b) snap-back, (c) bifurcation, (d) bifurcation 

combined with limit points and snap-back. 

 

Nonlinear Structural Analysis deals with the prediction of the response of nonlinear 

structures by model simulation. It involves a combination of mathematical modeling, 

discretization methods and numerical techniques.  

To this end the finite element methods dominate the discretization landscape. 
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3.2  RESIDUAL FORCES 
 

Discrete equilibrium equations in nonlinear static structural analysis are often 

represented in the compact residual force form: 

0ΛDr =),(
 

where: 

r  is the residual vector that contains out-of-balance forces, 

D  is the state vector (FE nodal displacements that identify the structural 

configuration), 

Λ  is an array of control parameters (e.g. commonly mechanical load levels). 

 

The degrees of freedom collected in D  are usually physical or generalized 

unknown displacements. 
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It can be also written as: 

),()( ΛDFDP =     or    
0ΛDFDPΛDr =−= ),()(),(

 

where: 

P   indicates the internal forces (dependent on the structure’s configuration) 

F  is the vector of external loads. 

 

If the vector r is made to vary with respect to the components of D while Λ is 

constant, it provides the Jacobian matrix K obtainable upon differentiation: 
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It is also called the tangent stiffness matrix in structural problems. 
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3.2.1 STAGING IN NONLINEAR ANALYSES 

 

Multiple control parameters are common in real nonlinear problems. They are 

similar to multiple load conditions in linear problems.  

In linear cases, multiple load conditions can be processed independently because 

any load combination is readily handled by superposition.  

 

In nonlinear problems, however, control parameters can not be varied 

independently.  

 

Typically, the analysis requires that the user defines the control parameters to be 

provided to the computer program during the model pre-processing phase. 

 

A stage can be defined as “advancing the solution” from  ΛA to ΛB when the solution 

uA is known. 
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Moreover, it can be assumed that the components of Λ will vary proportionally to a 

single control parameter λ (stage control parameter) that varies from 0 to 1: 

BA ΛΛΛ ⋅+⋅−= λλ)1(  
The nonlinear residual equation to be solved in the stage from ΛA to ΛB can be 

written: 

0Dr =),( λ  

with   ADD =  for 0=λ . 

 

The importance of staging in nonlinear static analysis arises from the inapplicability 

of the superposition principle typical of linear analysis. 
 

For example, the sequences 

CACBA ΛΛΛΛΛ →→→
 

do not usually produce the same final solution (intrinsically path-dependent 

problems). 
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3.2.2 INCREMENTAL FORM OF RESIDUAL EQUATIONS 
 

The incremental form of the residual equation can be obtained by differentiating the 

residual vector with respect to the time variable which is introduced in order to 

relate the load factor with a physical or conventional time. 
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At regular points of the equilibrium path, the stiffness matrix is not singular and the 
solution provides: 
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v  being the incremental velocity vector. 
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3.2.3 PROPORTIONAL LOADING 

If in the residual equations: 

0DFDPDr =−= ),()(),( λλ      or     ),()( λDFDP =  

the external force vector does not depend on the state parameters (e.g. 

displacements D), )(λFF =  , the above residual relations are called separable. 

Moreover if )(λF  is linear in λ ,  qF ⋅= λλ)( ,  

the vector  
q

r
q =

∂

∂
−=

λ    is constant. 

 

The incremental form of the residual equation becomes: 
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3.2.4 CONSERVATIVE  SYSTEMS 

 

In this cases the internal force vector P  and the external load vector F  can be 

obtained by using the corresponding potentials: 

D
P

∂

∂
=

U

,     D
F

∂

∂
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W

       or, for the residual force vector:  D
r

∂

Π∂
=

 

with WU −=Π  being the total potential energy of the system. 

 

The residual equilibrium equations: 0r =  correspond to the fact that – at the 

equilibrium – the total potential energy is stationary with respect to any variation of 

the state vector,  
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a) LOAD POTENTIAL FOR CONSTANT FORCES 

The case of constant forces (in magnitude and directions) allows us to simply 

express the force potential as: 


=

=
n

i

i
T
iW

1

DF
 

where the vector iD  indicates the structure deflection at the point of application of 

the concentrated force iF . 
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b) INTERNAL ENERGY 

Consider a simple 2D truss element 

1 u1

2 u2

X (u )

Y (u )

O

v1

v2

 

The state vector is { }
2211

vuvu
T =D . 

The truss elongation is:  
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and the truss internal energy becomes: 
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The components of the internal forces can be obtained as: 
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that are nonlinear functions of the displacements: geometrical nonlinearities have 

been simply obtained by considering geometric effects that are related to the 

change of direction of the truss element. 
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- Example: 2D bar element (with 2 nodes) 

 

A simple bar element with linear mechanical behavior is herein assumed (small 

strains but large displacements and rotations can occur). 

By using standard linear interpolation functions (shape functions) the displacement 

vector of a generic point along the bar can be written as: 
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where the natural coordinate 11 ≤≤− ξ  span the truss element (parent element). 

In the Total Lagrangian formulation the Green-Lagrange (GL) strains E  and the 

second Piola-Kirchhoff stresses S  are used. 
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The only GL strain component in this case is:  
const

L
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It can be written as: 

[ ] DBDuBB =+=+= )(nlnl EEE  

where the linear ( lB ) and nonlinear ( nB ) compatibility matrices have been used. 

 

Initial and final length of the bar: 

 

=2
0L  

=2
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Current coordinates 
of the nodes1 and 2: 
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Green Lagrange strain: 
 

=E
 

 
 

 
 

 

=lE
 

 

Depends on the bar’s initial 
configuration only 
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Stress state (second Piola-Kirchhoff stress) in the axial direction: 

E⋅+= ESS 0        and related axial force:   SAN 0=  

0S : initial stress present in the bar  (if any) 

Case of external conservative and proportional loads: qF λ=  
 

Total potential energy: 
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L

T

V

o dXESAdVESWU λ−+=−+=−=Π 
00

)
2

1
()

2

1
(

2
00

2
0 EEEE

 

 
T

NL Bp 0=  



3.27 

The stationary condition becomes  ( DBBDB δδδ )( nl +==E ): 

0)( 0000
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T
LN BP 0= : internal force vector,  with E)ESASAN +== 000 (  

The tangent stiffness matrix can be written as: 
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MK   material tangent stiffness matrix  

GK
  geometric tangent stiffness matrix 
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Being:   
B
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The material tangent stiffness matrix MK  depends only on the material properties 

(for E  use the tangent elastic modulus of the material, TE ). 

 

 

 

 



3.29 

Finally: 
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The geometric tangent stiffness matrix GK  depends only on the stress state S . 
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3.3  SOLUTION OF NON-LINEAR PROBLEMS 
 

The solution of the residual equations: 

0FDPr =−= )(     or     FDP =)(  

can be obtained by bringing to zero the residual force vector r  (in the following 

indicated with ψ  for the discretized structure), while the displacement vector is D ): 

0FDPψ ≠−= )(
 

 

The requirement 0ψ→
 must be fulfilled by mean of an iterative process. 

The vector 0ψ ≠  can be interpreted as a measure of the equilibrium violation. 

 

The generic term of the unbalanced force vector can be written through a first order 

power series expansion as: 
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In matrix form we have: 
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where the Jacobian matrix  ijJ
  is defined as: 
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The second term corresponds to a higher order contributions and can be neglected 

The algebraic system becomes: 
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The matrix )(
kDK  is the tangent stiffness matrix, i.e. its the local gradient of the 

force-displacements relationship. 

The solution strategy based on the tangent stiffness method (TSM or 

Newton’s method) is illustrated in the following figure for a 1D problem. 
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The method operates by: 
 

- first attempt of the solution: 
0

D  (often it is assumed 0D =0
); 

- determine the corresponding initial tangent stiffness matrix: )(
0DK ; 

- determine the initial vector of unbalanced forces: )(
0Dψ  0)(

00 ≠−⋅= FDDK
 

- solve for 
0

Dd : 

)()(
0010 DψDKD ⋅−= −

d  

(for some choice of 
0

D  the matrix )(
0DK  may not be invertible!). 

- update the displacement vector: 
001

DDD d+=  

- determine  )(),(
11

DψDK and solve for 
0

Dd : 

)()(
1111

DψDKD ⋅−= −
d  

- Continue up to the fulfillment of some convergence criteria. 



3.34 

The stiffness matrix must be inverted at each iteration (by using the Gauss 

algorithm the inversion of a square nxn matrix requires a number of operations of 

the order of )3/(
3

nO ). 

 

The initial stiffness method (ISM or modified Newton-Rapson) does not 

require to invert the matrix at every iteration. 

 

 

The initial stiffness matrix is used throughout the computational process. 

 

The recursive solution operation becomes: 

 

)()(
01 kk
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This method usually requires a greater number of iterations than the TSM. 

This approach is unconditionally stable and can be used also for softening 

materials. 
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These methods can be refined by applying the loads to the structure in more than 

one single step; this aspect is particularly important when the structural response 

depends of the load path, such as for plasticity problems. 
ψ

ψ ψ

∆

                    

ψ
ψ ψ

∆

 
 

The method of the tangent stiffness applied in one single iteration for each load 

step, corresponds to the direct integration of the problem. 
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By applying the load in several steps we have: 

0)( FDP ⋅= λ
 

where λ is the load factor and  0F  the base vector of the nodal forces. 

By differentiating with respect to λ: 
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The incremental displacements are evaluated with respect to the incremental load 

factor multiplier λd , with  ( ) 11
/

−− = DPK ddT  

 

Such an approach is usually divergent if the load is not applied in a sufficiently high 

number of steps (small values for λd ). 
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NB: All the above methods cannot follow the equilibrium path when snap-back or 

snap-through occur. 
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3.4  DETAILS OF THE SOLUTION PROCEDURES 
3.4.1 NEWTON-RAPSON METHOD 

 

• Most popular method 

• Assume d
i
 at i-th iteration is known 

• Looking for d
i+1

 from first-order Taylor series expansion 

 

 
                           : Jacobian matrix or Tangent stiffness matrix 

• Solve for incremental solution 

• Update solution 
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N-R METHOD CONT. 
 
 

• Observations: 
– Second-order convergence near the solution (Fastest method!) 

– Tangent stiffness             is not constant 

– The matrix equation solves for incremental displacement 

– RHS is not a force but a residual force, 

– Iteration stops when  conv < tolerance  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

i i
T ( )K d

exact n 1

2n
exact n

u u
lim c

u u

+

→∞

−
=

−

∆ id

≡ −i i( )R F P d

+
=

=

=
+





n i 1 2
jj 1

n 2
jj 1

(R )
conv

1 (F )

+
=

=

∆
=

+ ∆





n i 1 2
jj 1

n 0 2
jj 1

( u )
conv

1 ( u )
Or, 



3.41 

IN SOME CASES THE N-R METHOD DOES NOT CONVERGE 
 

• Difficulties 

– Convergence is not always guaranteed 

– Automatic load step control and/or line search techniques are often used 

– Difficult/expensive to calculate 
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WHEN N-R METHOD DOES NOT CONVERGE CONT. 
 

 

• Convergence difficulty occurs when 

 Jacobian matrix is not positive-definite 

 
P.D. Jacobian: in order to increase displ., force must be increased 

 
 

 Bifurcation & snap-through require a special algorithm 
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3.4.2 MODIFIED N-R METHOD 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

• Constructing        and solving                  is expensive 

 

• Computational Costs (Let the matrix size be N x N) 

 L-U factorization ~ N
3
 

 Forward/backward substitution ~ N 

• Use L-U factorized           repeatedly 

• More iteration is required, but 

each iteration is fast 

• More stable than N-R method 

• Hybrid N-R method can be used 
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EXAMPLE – MODIFIED N-R METHOD 

• Solve the same problem using modified N-R method 
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EXAMPLE – MODIFIED N-R METHOD CONT. 

• Iteration 2 
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3.4.3 INCREMENTAL SECANT METHOD 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

• Secant matrix 

– Instead of using tangent stiffness, approximate it using the solution 

from the previous iteration 

– At i-th iteration 

 
 

– The secant matrix satisfies 

 
 

– Not a unique process in high dimension 

 

• Start from initial K
T
 matrix, iteratively update it 

– Rank-1 or rank-2 update  

– The textbook has Broyden’s algorithm (Rank-1 update) 

– Here we will discuss BFGS method (Rank-2 update) 
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INCREMENTAL SECANT METHOD CONT. 

• BFGS (Broyden, Fletcher, Goldfarb and Shanno) method 

 Stiffness matrix must be symmetric and positive-definite 

 

 
 

 Instead of updating K, update H (saving computational time) 

 

 

 

 

 

 

 
 

 Become unstable when the No. of iterations is increased 
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3.4.4 INCREMENTAL FORCE METHOD 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

• N-R method converges fast if the initial estimate is close 

to the solution 

• Solid mechanics: initial estimate = undeformed shape  

• Convergence difficulty  

occurs when the applied  

load is large  

(deformation is large) 

• IFM: apply loads in  

increments. Use the  

solution from the  

previous increment  

as an initial estimate 

• Commercial programs  

call it “Load Increment”  

or “Time Increment” 
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INCREMENTAL FORCE METHOD CONT. 

• Load increment does not have to be uniform 

 - Critical part has smaller increment size 

  

• Solutions in the intermediate load increments 

 - History of the response can provide insight into the problem 

 - Estimating the bifurcation point or the critical load 

- Load increments greatly affect the accuracy in path-dependent 

problems 
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3.4.5 LOAD INCREMENT IN COMMERCIAL SOFTWARE 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

• Use “Time” to represent load level 
– In a static problem, “Time” means a pseudo-time 

– Required Starting time, (T
start

), Ending time (T
end

) and time increment 

– Load is gradually increased from zero at T
start

 and full load at T
end

 

– Load magnitude at load increment T
n
: 

 

 

 
 

• Automatic time stepping 

– Increase/decrease next load increment based on the number of 

convergence iteration at the current load 

– User provide initial load increment, minimum increment, and maximum 

increment 

– Bisection of load increment when not converged 
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3.4.6 FORCE CONTROL VS. DISPLACEMENT CONTROL 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

• Force control: gradually increase the applied forces and 

find equilibrium configuration 

• Displ. control: gradually increase the prescribed 

displacements 

– Applied load can be calculated as a reaction 

– More stable than force control. 

– Useful for softening, contact, snap-through, etc. 
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3.4.7 NONLINEAR SOLUTION STEPS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

1. Initialization: 

2. Residual Calculation 

3. Convergence Check (If converged, stop) 

4. Linearization 

 Calculate tangent stiffness  

5. Incremental Solution: 

 Solve 

6. State Determination 

 Update displacement and stress 

7. Go To Step 2 
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NONLINEAR SOLUTION STEPS CONT. 

• State determination 

- For a given nodal displ d
k
, determine current state (strain, stress, 

etc) 
 
  

 - Sometimes, stress cannot be determined using strain alone 

  

• Residual calculation 

 - Applied nodal force − Nodal forces due to internal stresses 
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EXAMPLE – LINEAR ELASTIC MATERIAL 

• Governing equation (Scalar equation) 

 
 

 Collect  

 

 

 
 

• Residual 
 

• Linear elastic material 
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EXAMPLE – NONLINEAR BAR 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

• Rubber bar 

• Discrete weak form 

• Scalar equation 
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EXAMPLE – NONLINEAR BAR CONT. 
 

 

• Jacobian 

 

 

• N-R equation 

 

• Iteration 1 

 

 

• Iteration 2 
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3.4.8 N-R OR MODIFIED N-R? 

• It is always recommended to use the Incremental Force Method 

– Mild nonlinear: ~10 increments 

– Rough nonlinear: 20 ~ 100 increments 

– For rough nonlinear problems, analysis results depends on increment size 

• Within an increment, N-R or modified N-R can be used 

– N-R method calculates KT at every iteration 

– Modified N-R method calculates KT once at every increment 

– N-R is better when: mild nonlinear problem, tight convergence criterion 

– Modified N-R is better when: computation is expensive, small increment size, and 

when N-R does not converge well 

• Many FE programs provide automatic stiffness update option 

– Depending on convergence criteria used, material status change, etc 
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3.5  CONVERGENCE CRITERIA 
 

Since the solution of non linear problems is obtained through sequential 

approximations, it is necessary to introduce a proper tolerance measures to quantify 

the error in the solution and stop the iterative process. 

Several measures of the degree of convergence have been introduced: 

 

• Most analysis programs provide three convergence criteria 

- Work, displacement, load (residual) 

- Work = displacement * load 

- At least two criteria needs to satisfy the convergence 
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• Traditional convergence criterion is load (residual) 

- Equilibrium between internal and external forces 

 

• Use displacement criterion for load insensitive system 
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3.5.1 DISPLACEMENT CONVERGENCE CRITERION 

 

The displacement error is defined as the ratio between the norm of the 

displacement increment and the current norm of the displacement vector: 
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where dt  is the assumed error tolerance for such a criterion. 
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3.5.2 UNBALANCED NODAL FORCES CONVERGENCE CRITERION 

The total force error is defined as the ratio between the norm of the unbalanced 

force difference between two subsequent iterations and the current norm of the 

unbalanced force vector: 
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where ft
 is the assumed error tolerance for such a criterion. 
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3.5.3 UNBALANCED SINGLE NODAL FORCES CONVERGENCE CRITERION 

The single nodal force error is defined as the maximum ratio between the norm of 

the nodal unbalanced force and the total current norm of the nodal applied force 

vector: 
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where 1ft  is the assumed error tolerance for such a criterion. 
 
 

3.5.4 ENERGY CONVERGENCE CRITERION 

The error in term of energy is defined as the ratio between the elastic energy 

associated with the displacement increment and the current total energy: 
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where Ent  is the assumed error tolerance for such a criterion. 

This approach embeds information coming from both the displacements and the 

forces. 
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3.5.5 ACCURACY VS. CONVERGENCE 

 

• Nonlinear solution procedure requires: 

– Internal force P(d) 

– Tangent stiffness    

– They are often implemented in the same routine 

• Internal force P(d) needs to be accurate 

– We solve equilibrium of  P(d) = F 

• Tangent stiffness K
T
(d) contributes to convergence 

– Accurate K
T
(d) provides quadratic convergence near the solution 

– Approximate KT(d) requires more iterations to converge 

– Wrong K
T
(d) causes lack of convergence 

∂
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K d
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3.5.6 SOLUTION STRATEGIES 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

• Load Increment (substeps) 
– Linear analysis concerns max load  

– Nonlinear analysis depends on  

load path (history) 

– Applied load is gradually increased 

within a load step 

– Follow load path, improve accuracy,  

and easy to converge 

 
 

• Convergence Iteration 

– Within  a load increment,  an iterative  

method (e.g., NR method) is used to  

find nonlinear solution 

– Bisection, linear search, stabilization, etc 
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• Automatic (Variable) Load Increment 

 

– Also called Automatic Time Stepping 

– Load increment may not be uniform 

– When convergence iteration diverges, the load increment is halved 

– If a solution converges in less than 4 iterations, increase time increment by 

25% 

– If a solution converges in more than 8 iterations, decrease time increment 

by 25% 

 

 

• Subincrement (or bisection) 
 

– When iterations do not converge at a given increment, analysis goes back to 

previously converged increment and the load increment is reduced by half 

– This process is repeated until max number of subincrements is reached 
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• Mesh distortion 
 

– Most FE programs stop analysis when mesh is distorted too much 

– Initial good mesh may be distorted during a large deformation 

– Many FE programs provide remeshing capability, but it is still inaccurate or 

inconvenient 

– It is best to make mesh in such a way that the mesh quality can be 

maintained after deformation (need experience) 

 



3.67 

3.6 REFERENCES 
 

 

• Brighenti R.  Analisi numerica dei solidi e delle strutture: fondamenti del metodo 
degli elementi finiti, III Ed., Esculapio, Bologna, 2019. 

• Huges T.J.R.  The finite element method: linear static and dynamic finite element 
analysis, Prentice Hall, Englewood Cliffs, N.J., 1987. 

• Timoshenko S.P., Gere J.M., Theory of elastic stability, sec. ed. McGraw-Hill Book 
Inc., New York, 1961. 

• Owen D.R.J., Hinton E.   Finite elements in plasticity, Pineridge Press, Swansea, 
U.K., 1980. 

• Zienkiewicz O. C., Taylor R. L.  The Finite Element Method, 5th Ed., Vol. 2: Solid 
Mechanics, Butterworth-Heinemann, 2000. 

• Zienkiewicz O.C.  The finite element method, Mc Graw-Hill, 1986. 
 


